

hack.guides() CMS

Contents:

	hack.guides()
	Developer Documentation

	Getting Involved

	CHANGELOG
	version .6 - 7/7/16

	version .5 - 5/9/16

	version .4 - 4/5/16

	version .3 - 3/11/16

	version .2 - 3/11/16

	version .1 - 2/23/16

	Requirements
	Optional requirements

	Install for local development
	Setup environment variables

	First-time Setup

	Run locally with Flask webserver

	Run locally with Gunicorn webserver

	Setting up Celery for background processing

	Testing
	Testing without browser

	Adding tests

	Running tests locally

	Github Application Setup
	Create a repository for guides

	Registering a Github Application

	Layout of content repository
	Layout components

	Branches

	Deployment
	Heroku

	Deploying with local instance

	Setting Featured Guide

	Publish Workflow
	Draft

	In-review

	Published

	Merging guide changes
	Simple merges with github.com

	Complex merges aka the hacker way

	Easier visualizing of complex diffs

	Github API usage
	Logging API Rate Limits

	Github Webhooks
	Configuring Push Events

	Configuring Delete Events

	Testing

	Frequently Asked Questions
	How do I change the URL for an existing guide?

	How do I change the title for an existing guide?

	How do I change the stack for an existing guide?

	Views

	Model API
	Article

	User

	File

	Heart

	Image

	Lib

	Remote API

	Utility functions

	Release Process

Indices and tables

	Index

	Module Index

	Search Page

 This repository is no longer used or maintained.

hack.guides()

hack.guides() [http://www.pluralsight.com/guides/] is an
open-source CMS based on Markdown [http://daringfireball.net/projects/markdown/]
and Github [http://github.com] written by-developers, for-developers. The
CMS is open-source (this repo). All the content i.e. hacker guides are also
stored in an open-source Github repo located
here [https://github.com/pluralsight/guides].
See the official hack.guides() website [http://www.pluralsight.com/guides/] for an example of what a running version of this CMS looks like.

The aspiration of hack.guides() is to be an open-source community movement to
help bring knowledge to the world. Software developers learn new skills, and
collaborate together on technical writing. Ultimately we aspire to have this
content delivered to other spoken languages through a community of volunteer
translators. Our vision is to democratize professional technology learning.

hack.guides() is subsidized by Pluralsight [http://www.pluralsight.com].
It is open-sourced via the AGPL 3.0 license.

Developer Documentation

Please see the following documentation on Read the Docs [http://readthedocs.org] for
more detailed documentation of the code of the CMS.

http://hacker-guides-cms.readthedocs.io/en/latest/

Getting Involved

We’re working to keep making this community project better. You have great
ideas and expertise that could help us! Take a look at our current issues [https://github.com/pluralsight/guides-cms/issues] and let us know where we can improve. See something you can fix? Send us a Pull Request!

Please join our Slack community [https://hackguides.herokuapp.com/] to be in touch for fastest response.

CHANGELOG

version .6 - 7/7/16

New Features

	Revamped design to be more colorful with stack images for every guide, etc.

	
	Added ability to heart guides [https://github.com/pluralsight/guides-cms/commit/c2cb70be200bcac851f24bd5e0390e5d70fda1d5]

	
	Requires use of redis and use of ENABLE_HEARTING and REDIS_HEARTS_DB_URL environment variables

	Support for Github Bio on profile and article pages [https://github.com/pluralsight/guides-cms/pull/104]

	Improved support for Facebook Open Graph tags on homepage and article [https://github.com/pluralsight/guides-cms/pull/95]

	Improved layout of review page and home page when there is no featured guide [https://github.com/pluralsight/guides-cms/commit/65fff27f34a3cb787298e65cb1ecd2ee604da3f9]

	
	New stack images [https://github.com/pluralsight/guides-cms/pull/89]

	
	Thanks @eh3rrera [https://github.com/eh3rrera]!

	
	Use Github webhooks to keep list of branches and cache up to date [https://github.com/pluralsight/guides-cms/pull/79]

	
	Requires use of WEBHOOK_SECRET environment variable

	New page highlighting tutorial contest

	Properly escape all code on article pages, not just HTML [https://github.com/pluralsight/guides-cms/pull/85/commits]

Bug Fixes

	Fix exception when running with empty REDISCLOUD_URL env variable [https://github.com/pluralsight/guides-cms/commit/10f9cf081c6652e29c37c1b5e326794fe21b7c8c]

	Fix html escaping issues on article page [https://github.com/pluralsight/guides-cms/pull/103]

	Shorten long author names to prevent from breaking out of design boxes [https://github.com/pluralsight/guides-cms/commit/535da3548cabe0d87d66af034a718c20af669dc2]

	KeyError exception on some invalid page URLs [https://github.com/pluralsight/guides-cms/commit/d32b677652e0c6306daad2914b11ed853019863f]

	Ignore invalid statuses when reading article [https://github.com/pluralsight/guides-cms/commit/0a86098d63e9fedc7d61282b2b3b195b3fcaf10d]

	Error when handling failed github authentication request [https://github.com/pluralsight/guides-cms/commit/066518c8fabe10d038af7fa166293d4c56018301]

	Bug with removing a branch when it being added again [https://github.com/pluralsight/guides-cms/commit/7aa34565d775519d2315e67e6ccdd70b0d889c72]

	Problem unpredictable featured guide when two guides have the same title [https://github.com/pluralsight/guides-cms/commit/e6beae19d78a767a8cde384da61337c28ed70ff8]

Changes

	Add CTA to article list when filtering returns no results [https://github.com/pluralsight/guides-cms/commit/6ec72ce056b4d063e3251a16343ddc5eb0de03a1]

	Guides are now grouped by publish status on profile page [https://github.com/pluralsight/guides-cms/pull/105/commits/64210b755ce1a367cfc911be4f055dac99c58964]

	All markdown is rendered on front-end with Javascript instead of using
Github API [https://github.com/pluralsight/guides-cms/pull/86]

	Changed copy on login page to be more informative [https://github.com/pluralsight/guides-cms/commit/1cd4f69d0a3d42d75888062b20dd6b88d3de2278]

	New logo highlighting our sponsor, Pluralsight [https://github.com/pluralsight/guides-cms/pull/87]

	Store featured guide with redis [https://github.com/pluralsight/guides-cms/commit/e6beae19d78a767a8cde384da61337c28ed70ff8]

	Remove case-insensitive comparison for featured guide environment variable [https://github.com/pluralsight/guides-cms/commit/ce8f0a053729fc6103263a928cbc7c57e93b76c1]

version .5 - 5/9/16

New Features

	
	Logging of Github API rate limit

	
	See bin/rate_limit_watcher.py which can be used with Heroku Scheduler
add-on or cron in any UNIX environment

	
	Added newrelic to requirements for performance monitoring

	
	This is optional, but still in the requirements.txt file.

	
	Added full-screen editor as default and removed non-full screen

	
	This resulted in a lot of improvments including simpler CSS, better
integrated help, tooltips, modal error dialogs, and a full-screen view
with all possible controls readily available.

	Big speed improvements to editor [https://github.com/pluralsight/guides-cms/pull/47]

	Added links to hack.pledge and hack.summit in header [https://github.com/pluralsight/guides-cms/pull/42]

	Show list of contributors on guide page [https://github.com/pluralsight/guides-cms/pull/45]

Bug Fixes

	Edit guide link is broken after changing publish status [https://github.com/pluralsight/guides-cms/issues/70]

	Editor removes escape characters even if in a codeblock [https://github.com/pluralsight/guides-cms/issues/64]

	Prevent extra commit to metadata file on first edit [https://github.com/pluralsight/guides-cms/issues/67]

	Image uploader doesn’t set committer name correctly on commits [https://github.com/pluralsight/guides-cms/issues/66]

	Fixed URLs involving a branch name with special characters [https://github.com/pluralsight/guides-cms/commit/ea3ed3bc16485277fe767bf14f2490f27cfadb3f]

	Fixed problems with guide titles having special URL characters [https://github.com/pluralsight/guides-cms/commit/d91c3555352f5fbf72ad44587496f8dc1f933f92]

	Remove unecessary Github API request when fetching contributor lists [https://github.com/pluralsight/guides-cms/commit/e345ee1638ffb753ef9f132484ea9101a97be0db]

	Fetching contributors lists twice for guides with no contributors [https://github.com/pluralsight/guides-cms/commit/e848a8731335ba9ebc9c84c4937fc39b3f0dc4ea]

	Prevent mobile share buttons and email signup box overlapping [https://github.com/pluralsight/guides-cms/commit/7a065c646c536b7d5f5381fcd373552cdcb29dfb]

	Incorrectly including any user with a branch as a contributor [https://github.com/pluralsight/guides-cms/commit/fbf5bc5a8516630317b817cc76f6b9863a987e40]

	Faster loading of rendered markdown from Github API [https://github.com/pluralsight/guides-cms/commit/8793949e03dbf161c384c34e170aeaac2f2c5c24]

	Fixed escape <script> tag in article content [https://github.com/pluralsight/guides-cms/pull/36]

	Properly serialize file listing to cache with unicode [https://github.com/pluralsight/guides-cms/commit/4b58aa08aa94fd5a2668220c994a1ff954ab5912]

	Properly show featured guide on my-drafts page [https://github.com/pluralsight/guides-cms/commit/d41fc34d1e71160d866d25a96dcd9091b69e03b6]

	
	Add contributor page with leaderboards [https://github.com/pluralsight/guides-cms/commit/10bd2c6cc88a0149597ed68c785e0fbc376dfb34]

	
	Introduces IGNORE_STATS_FOR environment variable

Changes

	Disable save button on editor until a title has been chosen [https://github.com/pluralsight/guides-cms/pull/69]

	Improved ‘Live Markdown Tutorial’ UI to include a more prominent ‘Close
Tutorial’ button [https://github.com/pluralsight/guides-cms/pull/69]

	Renamed ‘Cancel’ button on editor to ‘Back’ [https://github.com/pluralsight/guides-cms/pull/69]

	
	Branches are named after user and guide, not just user [https://github.com/pluralsight/guides-cms/issues/58]

	
	Makes merging changes much easier since each branch only deals with a
single guide

	Improved load time of FAQ page [https://github.com/pluralsight/guides-cms/issues/59]

	Redirect to master branch if branched guide is missing [https://github.com/pluralsight/guides-cms/issues/50]

	Do not show users in IGNORE_STATS_FOR environment variable in contributor
lists [https://github.com/pluralsight/guides-cms/commit/e345ee1638ffb753ef9f132484ea9101a97be0db]

	Use username/login in profile page title [https://github.com/pluralsight/guides-cms/commit/cffd8b0ebe039c367ada696b8b3e951cdf4b1867]

	‘Allow redirect URLs file to contain markdown lists https://github.com/pluralsight/guides-cms/commit/a83155605492dd7da65af662de1e3d937f56be68

version .4 - 4/5/16

New Features

	Live markdown tutorial in new editor

	Auto save guide text using HTML5 local storage

	Side-by-side markdown preview

	Optional scroll-sync between text and markdown preview panes

	Ability to add images to guides via standard file dialog

	Support for 301 redirects for guides (see redirects file)

	Easier signup to Slack community via popup box on FAQ page

Bug Fixes

	Links in editor preview open in new tabs

	Use proper HTTP status codes for redirects requiring authentication

	Properly escape characters in Table of Contents (see issue [https://github.com/pluralsight/guides-cms/issues/29]

	Incorrect links to branched guides on main guide page

	Overlapping of table of contents with footer

	Do not show users’ drafts on profile page unless logged in as user

	Prevent errors on redundant publish status changes

	Prevent making API calls for URLs that do not look like guides on guide page

	Issue losing list of branches when saving original article after branched

	Issue with /user/ returning articles of repo owner instead of error

	Making a commit with wrong user name by incorrectly reading user cache (see commit [https://github.com/pluralsight/guides-cms/commit/495efee1149cc8d8731b218ef2a81c5787aa77b3]

	Maintain social share counts for po.st with new URL structure introduced in v.3

Changes

	Changed editor from Bootstrap Markdown editor [http://www.codingdrama.com/bootstrap-markdown/] to Ace [https://ace.c9.io/]

	Show published guides instead of error page when unable to find requested guide

	Improved caching of file listings for homepage and review pages

	Add better explanation of publish workflow after submitting a new guide

	Improve error message when creating duplicate guide with title/stack

	Removed redundant ‘Edit guide’ link in header on guide page

	Removed form to set featured article

	Use /author/<name>/ URL for authors instead of user, 301 redirect from /user/<name>

version .3 - 3/11/16

Bug Fixes

	Fix bug with not checking for article existence on editor page

	Fix link for featured article after redesign

	Fix bug with file listing getting updated with publish status before it changed

version .2 - 3/11/16

Changes

1. Three stage publish workflow

Draft

The initial stage where all guides start out in. Guides in this stage are not
visible by anyone other than the original author. [1]

All guides marked as unpublished will be moved to draft stage during the
upgrade process. Therefore, initially there will be no guides in the
in-review stage.

In-review

The second stage were guides go that are ready for community editing help. Any
user can mark their guide as ‘in-review’ from dropdown at the bottom of the
guide page.

Guides should only be marked as ‘in-review’ when they are complete and ready
editing help.

Please don’t mark partially completed guides as in-review. This will
necessarily waste community editors time reviewing guides that are not
completed.

Guides marked as ‘in-review’ will show up on the ‘Review’ page.

Published

The final stage for fully edited articles is published. This is the stage
where the community editors have decided a guide is ready for the world to see.
Only community editors can move a guide into the published stage.

Published articles will be available on the homepage of the site.

2. Redesign of the content repository

The content repository is currently a flat structure. This means all the
guides are directly at the top level of the repository, which makes it
difficult to easily navigate on the github.com repository view. This pull
request reorganizes the repository to use a more intuitive and nested layout
based on the publish status of the guide as well as the stack. For example,
each publish stage will have a folder with a nested folder for each stack:

This will make quickly browsing the content much easier on github.com.

3. URL redesign (with backwards compatability)

The URL scheme has been redesigned to include the stack. This gives visitors
more insight into the type of guide by looking only at the URL.

Therefore, the guide URL will now be something like:

	/python/my-awesome-guide

instead of

	/my-awesome-guide

All the old URLs with only the title remain intact with a 301 redirect at the
/review/ endpoint.

Also, the status of a guide is represented by a query string, not directly in
the URL as before. So, the following URL will point to a guide in the
in-review stage:

	/python/my-awesome-guide?status=in-review

instead of

	/review/my-awesome-guide

This will allow articles to keep the same URL through the entire publish
workflow, improving their SEO and link maintainability. In addition, visitors
can clearly see in the URL the publish status of a guide. Soon there will be a
more visual way to see the status on the guide page itself, but not in this
change.

Note that changing the stack of your article will change the URL of your
guide. Therefore, change this with caution to avoid losing any SEO you might
have gathered on the old URL. Typically you should not be changing your stack
after you’re in the ‘in-review’ stage.

4. Github commits only involve guide author

Previously all commits to guides were pushed to github with a different author
and committer. The committer was marked as the owner of the content
repository. This lead to a commit having a different author and committer,
which is confusing on github.com. Now all commits will have the same committer
and author to avoid this confusion. You as the author still get full
contribution credit, which will show up on your github.com profile. This
change just gives you commit credit by youreself.

5. Ability to change stack guide

This is not a recommended action because it will change a guides URL, which is
not ideal for SEO and link preservation. However, it is now allowed.

Upgrading

See the upgrade_repo_layout_fromv.1.py script for details on the content
repository conversion process. The upgrade script will use git mv to move
all guide diretories to their new locations thereby retaining the commit
history.

All guides marked as unpublished will be moved to draft stage during the
upgrade process. Therefore, initially there will be no guides in the
in-review stage.

	Run upgrade script on your content repository

	Run merge_branches.py and use the branch you used from step 1 to merge with.

	Push all remote branches to origin

	Push your master branch to origin

	Deploy new version of the CMS

	Run disqus redirect crawler [https://help.disqus.com/customer/en/portal/articles/912834-redirect-crawler] to update URLs for all comments.

[1] We don’t have strict privacy since the guides are also available on
github.com. So, technically a draft guide can still be viewed directly on
github, but there will be no way for users to see draft guides directly on the
content website.

Bug Fixes

	Improve commit messages when removing guides

version .1 - 2/23/16

Initial open source release during http://hacksummit.org.

Requirements

	Programming lanuage: Python 2.7.10 [http://python.org]

	Web framework: Flask [http://flask.pocoo.org]

	HTTP server: Gunicorn [http://gunicorn.org]

	See requirements.txt for additional Python package requirements

	Background jobs: Redis [http://redis.io]

Optional requirements

	Caching: Redis [http://redis.io]

Install for local development

	
	Clone repo

	
	git clone <repo> <location_to_clone>

	Install virtualenv [https://pypi.python.org/pypi/virtualenv]

	
	Create virtual environment for project

	
	virtualenv <env> where <env> is location to where you want to store
project environment. <env> is typically the directory of your git repo
or something like ~/.virtualenvs/env_name.

	
	Activate virtualenv

	
	source <path_to_env>/bin/activate

	
	Install requirements

	
	pip install -r requirements.txt

	Setup Github application

Setup environment variables

	
	Copy example_config.py to config.py and populate config.DevelopmentConfig with your own data.

	
	This is where you’ll copy and paste your Github OAuth application’s credentials.

	
	The defaults are all set in the config.Config so override only values you need. The following are required:

	
	SECRET_KEY

	GITHUB_CLIENT_ID

	GITHUB_SECRET

	REPO_OWNER - Name of your github user

	REPO_NAME - Name of repository you’ll store the guide content

	REPO_OWNER_ACCESS_TOKEN - OAuth token of your github user or owner of the repository where the guide content is stored. You cannot set this until after you run the application locally and authorize it with your github account as described below.

	CELERY_BROKER_URL - URL of Redis (or another broker) for handling background jobs (see instructions for Celery on heroku for help).

	DOMAIN - Base URL where your site will be running. This can be the URL of your Heroku deployment or localhost like 127.0.0.1:5000 or 0.0.0.0:5000.

First-time Setup

	Run python run.py or make run_flask if you have Make installed

	Browse to http://127.0.0.1:5000/login/

	
	Login with your github account and authorize your newly created application

	
	Login with the account you set as the REPO_OWNER

	Check your logs for the new token printed. This will be a CRTICAL level log message.

	You’ll need to place that token in the REPO_OWNER_ACCESS_TOKEN environment variable.

	Shutdown the local flask webserver with Ctrl-C and run python run.py again

Now you can test things from the CLI if that’s more your speed. However, there’s one more step to setting up the ability to publish articles. This requires running a celery process for background jobs.

You can try creating a guide once you have celery running locally or your CELERY_BROKER_URL configured to a running Redis server.

Note now you can use this local server and expose it to the Internet
through a secure tunnel if you want!

Run locally with Flask webserver

	Follow the first-time setup instructions

	Run python run.py or make run_flask and use Ctrl-C to stop the server.

Run locally with Gunicorn webserver

	Follow the first-time setup instructions

	Run make run_gunicorn

Setting up Celery for background processing

You already have Celery [http://celeryproject.org] installed if you used the requirements.txt file. However, now you need Redis [http://redis.io] running to process background jobs from Celery and fully enable publishing articles.

Setting up Redis locally is outside the scope of this document. You can refer
to the Redis documentation [http://redis.io/documentation] for that.
However, you can easily setup Redis on Heroku [http://heroku.com] by
following the these instructions.

Testing

Testing without browser

You can test a lot of the functionality of the application without a web
browser. In general, much of the interaction with the Github API can be used
directly from the command-line. To do this run the following:

python manage.py shell

Now you have access to the entire application. To test a Github API response
try the following:

from pskb_website import remote
remote.read_user_from_github(username='octocat')

You should now see the description of the famous Github octocat user!

Adding tests

New tests can be added under a test directory in the appropriate package.
The convention right now is to name the file as test_*.py

Running tests locally

To run tests locally, execute the following command from project root:

python py.test

This will find and run all tests in the current working directory.

Github Application Setup

We make heavy use of the Github API [https://developer.github.com] since all
of the persistent storage is a Git repository. So, you’ll need to register
your own Github OAuth [https://en.wikipedia.org/wiki/OAuth] token to have the
CMS make requests to the Github API. The following steps will walk you through
that setup process on github.com for an application running locally.

Create a repository for guides

First you’ll need a new repository for all your content. This can be an empty
repository at this point.

Registering a Github Application

	Login to github.com [https://github.com/login]

	Go to the OAuth applications for developers section [https://github.com/settings/developers] and click the register new application button

	
	Set the Authorization callback URL to http://127.0.0.1:5000/github/authorized

	
	You can also use http://0.0.0.0:5000 if you’re running locally with the
heroku local command.

	This is the URL Github will sent requests back to once a user has allowed
your application to access their account.

	You can fill out the other details as you see fit. The callback URL is the
most important. Now click register.

	Copy the Client ID and Client Secret on your newly created Github
application. You’ll need these to continue the installation.

Layout of content repository

The CMS expects a specific layout for the content repository, but you don’t
have to create the structure manually. You can start with an empty repository
and the structure will fill itself out as guides are added. However, it’s
useful to understand how the content repository is structured and there are
a few ‘static’ pages you have to create yourself. Below is the basic layout
from a high-level view. You can also see a working example
here [http://github.com/pluralsight/guides].

Layout components

|---- faq.md
|---- published.md
|---+ published
|---- + c-c++
|---- + ruby-ruby-on-rails
|---- + python
|---- + + guide-1
|---- + article.md
|---- + details.json
|
|---- in-review.md
|---+ in-review
|---- + c-c++
|---- + + guide-2
|---- + article.md
|---- + details.json
|---- + ruby-ruby-on-rails
|---- + python
|
|---- draft.md
|---+ draft
|---- + c-c++
|---- + ruby-ruby-on-rails
|---- + + guide-3
|---- + article.md
|---- + details.json
|---- + python
|
|---- redirects.md

The layout consists of a the following ‘types’ of files/objects:

Page

A page is just a markdown file at the top-level of the repository. Currently
there’s one page being used called faq.md. The markdown for this page will
automatically be rendered at the /faq.md URL.

redirects.md

This file contains mapping of old guide URLs to new URLs. The purpose of this
file is to accomodate changing guide titles/paths and maintaining old URLs with
temporary 301 redirects. The format of this file is ‘<old_url> <new_url>’ or
‘- <old_urL> <new_url>’ i.e space separated and as an optional markdown list
item. Keep in mind the URLs must be fully formed including the domain otherwise
the redirect will be based on the current domain.

This file is optional and must be manually created.

Guide Listing

The guide listing files are meant to be an easy way to read the listing of the
guides in the various publish workflow stages,
published, draft, or in-review. These files make it much faster to render the
contents of the / and /in-review/ URLs. Currently there is no other
persistent storage other than the Github repository. So, these files aggregate
the base-essentials of a list of guides into a single file. This way listing
guides only results in 1 Github API call instead of several to search the
entire repository.

The three listing files currently used are published.md for the listing of
published files appearing on the homepage, in-review.md for the listing
of files appearing on the /in-review/ page, and draft.md. The draft.md
file is not currently used by the reference website implementation. This is
because guides in the draft stage are considered private by the web
application. However, all guides are easily visible on github.com. So, the
draft.md file provides an easy way to browse the draft guides solely for
the github.com repository view.

Listing file structure

Guide directory

A guide consists of a directory named after the ‘slug-ifed’ version of the
guide title. This directory consists of two files, 1 for the content and 1 for
the metadata.

article.md

This file is the raw content in the markdown [http://daringfireball.net/projects/markdown/] format.

details.json

This is the metadata for the guide in the json format [https://en.wikipedia.org/wiki/JSON]. We chose JSON because it’s fairly readable and easy to use withlots of languages.

Why two files?

Metadata is necessary for computers, not for humans. We want guide data to
easily render great everywhere including the CMS front-end, Github.com, and
even in your own text editor. This isn’t very easy to achieve if you have to
hide your metadata somewhere in the same file.

Another bonus is we can modify the metadata indpendently of the content. This
allows for easier reading of the history for the most important part of the
guide, the content.

Branches

Branches are currently used for suggested ‘edits’ to guides by the community
editors. The branches are named to match the editor’s login, stack, and title
of the guide.

Each time a user edits an existing users’ guide a branch is created (or
updated). You can easily use Github’s compare functionality [https://github.com/blog/612-introducing-github-compare-view] to see the edits a particular user is suggesting.

You can try out the compare feature by going here [https://github.com/pluralsight/guides/compare/]. You can also append a login name to the end of this url https://github.com/pluralsight/guides/compare/ to see that users’ suggestions.

Why not forks?

Forks are great, but we decided to use branches for tracking user suggestions.
We’re pushing for simplicity from the start so using branches is definitely an
experiment. However, there are several benefits of using branches instead of
forks:

Pros of branches

	
	Creating branches is synchronous via the Github API.

	
	Forks via the Github API is asynchronous. Doing anything asynchronous is
more difficult because it requires a queue, etc.

	Prevents forking potentially large repository of unrelated guides to users’
account

	Editors will most likely be editing a single guide at a time. So, it’s
seems overkill to fork a repository full of guides when the user is only
trying to edit one.

	Ideally we’d like to request as few permissions from users’ github accounts
as possible. Forking requires the ‘public_repo’ scope [https://developer.github.com/v3/oauth/#scopes]. However, we can create branches using our own repository and add the user as the ‘commit author’ on the changes. This workflow doesn’t require the ‘public_repo’ scope.

Currently we’re requesting the ‘public_repo’ scope because that enables us
to star public repositories, which we anticipate using. So, this point is
somewhat irrelevant. However, it’s something to consider regardless.

Ultimately we can move to use forking in the future if branching becomes
limited or poses problems that forking would solve. Again, the major driver
here is simplicity.

Why not Gists?

We heavily considered using Github gists [https://gist.github.com] for the
guides. However, it’s not possible to create gist for one user in another
users’ account. The CMS github user cannot create a gist in a single gist
account and maintain the original author.

This is a problem because we’re striving to give all credit to original authors
and editors when making changes via the Github API. This allows any
contributions users to flow back to their account. This means every change
your make to a guide counts towards you total Github contributions [https://help.github.com/articles/viewing-contributions-on-your-profile-page/].

The other issue with gists is tracking. We could solve the contribution
problem by creating gists in every users’ account. However, then the CMS would
need external persistent storage to track all the gists. Also, users would not
be able to easily browse all the guides in a single location on github.com.

Deployment

Currently the application has only been deployed using Heroku [http://www.heroku.com]
but there are no reasons it cannot be deployed to any hosting platform or
server that supports the Flask framework [http://flask.pocoo.org].

Heroku

Heroku has a good guide for Python apps [https://devcenter.heroku.com/articles/getting-started-with-python#introduction]
that gives a nice overview of the concepts you’ll need to know to get going,
but some of the specifics for this setup are slightly different.

Real Python [https://realpython.com] also has a great guide on setting up a
basic flask app on Heroku [https://realpython.com/blog/python/flask-by-example-part-1-project-setup/].

The following steps assume you have the basic Heroku toolbelt installed [https://devcenter.heroku.com/articles/getting-started-with-python#set-up].

	
	Create Heroku [http://heroku.com] app

	
	heroku create [name]

	You can specify a name but it must be unique. You can also leave it blank
and Heroku will create a unique name for you.

	
	Add git remote for your app

	
	git remote add heroku git@heroku.com:<name>.git where <name> is the
name of your Heroku app from step 1.

	
	Setup Heroku config

	
	See example_config.py for a listing of the environment variables that
must be setup in your Heroku config.

	You’ll have to wait to setup the REPO_OWNER_TOKEN variable until the application is fully running.

	Do not forget to set HEROKU=1 in the heroku environment variables!

	
	You can set Heroku config variables with the following syntax:

	
	heroku config:set REPO_NAME=<name>

	Or something like the following if you have multiple remotes for Heroku

	heroku config:set REPO_NAME=<name> –app pro

	heroku config:set REPO_NAME=<name> –app stage

	Setup Redis add-on for background jobs <celery_on_heroku>

	
	Deploy changes

	
	git push heroku master

	Or something like the following if you have multiple remotes for Heroku

	git push stage master where <stage> is remote name for Heroku and
master is local branch you want to push.

	Make sure your changes are committed locally first!

	Go to your heroku dashboard settings <https://dashboard.heroku.com/> resources for your app and verify the worker task is running.

	
	Change the callback URL for your github application to the heroku URL

	
	Typically something like http://<app_name.herokuapp.com>/github/authorized

	
	Visit your running heroku application in the browser

	
	URL will be something like http://<app_name.herokuapp.com>/

	
	Login with your github account and authorize your newly created application

	
	Login with the account you set as the REPO_OWNER

	Check your logs for the new token printed. This will be a CRTICAL level log message.

	Set the printed token equal to the REPO_OWNER_ACCESS_TOKEN environment
variable
* heroku config:set REPO_OWNER_ACCESS_TOKEN=<token>

By default the application will be served up by Gunicorn [http://gunicorn.org].

You can slightly improve your performance on Heroku by using setting the
WEB_CONCURRENCY environment variable, which gunicorn automatically honors.
You can set that variable with the following command:

	heroku config:set WEB_CONCURRENCY=3

You’ll want to set this to something suitable for the size of your
Heroku dyno [https://www.heroku.com/pricing] and the memory requirements of
your the flask application.

Run application locally with Heroku Procfile

You’ll need to complete the setup below for getting things running on Heroku
before doing this, or at least setting up your Heroku environment variables as
described below. Then:

	Run heroku config –app <app_name> to see all the configuration

	Copy all the these configuration values into a file with the key=value format instead of key:value which is the output of the Heroku command.

	Change the callback URL on your github application to http://0.0.0.0:5000/

	Run heroku local –env <file_from_step_2>

Useful Heroku add-ons

	Papertrail [https://elements.heroku.com/addons/papertrail]

	Provides bigger log for debugging issues and enables easy searching

	Install the CLI tools [https://github.com/papertrail/papertrail-cli#readme]
for Papertrail if you prefer using the CLI over their website

	Below are a few useful search queries:

	Description

	Query

	All app output along with heroku routing requests

	(“app/web” OR “heroku/router”) -“newrelic”

	All output minus Heroku stats

	-“newrelic.core.agent” or -“newrelic.core.data_collector” or -“sample#memory_total” or -“sample#load_avg_1m” or -“sample#active-connections”

	Only web app output

	“app/web” -“newrelic”

	Github API rate usage

	“core remaining:”

	Heroku scheduled task output

	program:scheduler

	Exceptions from Celery tasks

	CalledProcessError

	Celery output worker

	-(dyno= OR exiting OR Booting OR Autorestarting OR State changed)

	New Relic [https://elements.heroku.com/addons/newrelic]

	Excellent performance analysis tool

Redis for background tasks

	Run heroku addons:create heroku-redis:hobby-dev to add the free Redis add-on

	This automatically sets up your REDIS_URL environment variable.

	Now run heroku config –app <heroku_app_name> to see the value of REDIS_URL

	
	Copy that value to a new environment variable on heroku and set it like this:

	
	heroku config:set CELERY_BROKER_URL=<REDIS_URL>

	We don’t set CELERY_BROKER_URL directly equal to REDIS_URL so that you’re free to setup Celery with whatever broker you choose.

Adding Redis caching on Heroku

	Determine if you want to use a
caching addon [https://elements.heroku.com/addons#caching] or
redis addon [https://elements.heroku.com/addons#data-stores].

	This application has been tested with the redis cloud addon [https://elements.heroku.com/addons/rediscloud] for caching data from the Github API.

	
	Redis was chosen for the following reasons:

	
	Cache value larger than 1MB (for large articles)

	Use the same service for other things later instead of just caching

	
	Add your addon

	
	heroku addons:create rediscloud:30 –app <app_name>

	The application will automatically start caching if you used the redis cloud addon described above. You can use a different Redis caching add-on, but you’ll need to change the setup of the caching layer in cache.py appropriately.

	See docs related to using Python with redis on Heroku [https://devcenter.heroku.com/articles/rediscloud#using-redis-from-python]

Deploying with local instance

Using this deployment method is only recommended for testing. However, often
times we’ve noticed this method is effective for testing locally and can be
faster than using `localhost` with your Github API callbacks.

You can also ‘deploy’ the application running simply on localhost and expose
your localhost port through a secure tunnel using ngrok [https://ngrok.com]. Ngrok is recommended directly by Github for testing Github webhooks [https://developer.github.com/webhooks/configuring/]. It’s
also useful if you have everything running locally and want to get quick
feedback from testers, etc. without having to setup Heroku or another hosting
machine.

	Download ngrok [https://ngrok.com]

	Run locally using one of the available methods

	Run ngrok and take note of the unique Forwarding URL

	Set this base URL in your Github application as described in the
Github setup

Now anyone can go to the ngrok URL and they’ll get a secure tunnel to your
local machine for testing!

Setting Featured Guide

By default, the featured guide is stored in an environment variable called
FEATURED_GUIDE. This environment variable can be 1 of 2 types of values:

	JSON-ified tuple of (title, stack)

	String of title

Version 1 is more correct since guides can have duplicate titles but not
duplicate titles and stack. However, it’s easier to use version 2 because
it’s a simple string. Therefore, you can use whichever suits your situation,
if you don’t think you’ll have duplicate titles then version 2 is preferred.

Using environment variable

This environment variable must be set in a way that will persist across all
running instances of the application. You can do this with the Heroku CLI or
admin panel, if you’re running on Heroku.

Using Redis

A better solution for managing the featured guide is to use Redis. The CMS
will automatically use a single key in the ‘caching’ Redis database mentioned
above if you’re using the REDISCLOUD_URL setup. So, there’s no need to worry
about this if you are using the standard caching setup with REDISCLOUD_URL.

The CMS will automatically use version 1 of the FEATURED_GUIDE variable when
using Redis so you don’t have to worry about duplicate titles.

You will not be able to set the featured guide via the CMS UI if you’re not
using Redis to store the featured guide. This is because setting an
environment variable via the application itself is unreliable if you’re running
multiple instances of the application on multiple dynos or servers.

Publish Workflow

The publish workflow of this CMS consists of the following 3 stages. The
stage determines who can see the guide as well as where the guide appears on
the website front-end.

Draft

The initial stage where all guides start out in. Guides in this stage are not
visible by anyone other than the original author. [1]

In-review

The second stage were guides go that are ready for community editing help. Any
user can mark their guide as ‘in-review’ from dropdown at the bottom of the
guide page.

Guides should only be marked as ‘in-review’ when they are complete and ready
editing help.

Please don’t mark partially completed guides as in-review. This will
necessarily waste community editors time reviewing guides that are not
completed.

Guides marked as ‘in-review’ will show up on the ‘Review’ page.

Published

The final stage for fully edited articles is published. This is the stage
where the community editors have decided a guide is ready for the world to see.
Only community editors can move a guide into the published stage.

Published articles will be available on the homepage of the site.

Merging guide changes

Hopefully you’ll be getting lots of suggestions from readers on how to improve the guides or fix bugs in the code. This page describes the process of merging those changes into your master branch so everyone can see the results of this collaborative process.

Currently merging changes to guides’ is a manual process handled via the github.com website or locally with git. This is because merging suggestions needs to be verified by an editor and/or the original guide author. Here’s the normal process after a user has suggested a change via the CMS website:

Simple merges with github.com

	
	Create a pull request on github.com for the branch

	
	Browse the branches of the content repository and click the ‘New pull request’ button associated with the branch you want to integrate.

	Review the changes in the pull request on github.com

	You can automatically merge the changes via github.com if the changes merge cleanly and you want all of the changes.

	
	Edit the details.json file for the guide you just merged changes into and remove the branch you just integrated.

	
	This can also be done via github.com by browsing to the details.json file and using the ‘edit’ button.

	
	Delete the branch you just merged on github.com

	
	Browse the branches again and click the trash can icon next to the branch

Complex merges aka the hacker way

Often times you’ll only want part of the changes, or you want to handle any conflicts. This is a more involved process, which we recommend using the command-line Git interface. You can also use any Git GUI you prefer, but we’re describing the command-line approach since it’s the most universal.

Integrating all changes from branch

	
	Clone the content repository locally

	
	Use git clone <url> where <url> is the URL for the repository from
the main github repository page.

	
	Make sure all the remote branches are up to date

	
	Run git fetch origin

	
	Checkout the remote branch you want to integrate

	
	Run git checkout -b <branch_name> origin/<branch_name> where <branch_name> is the name of the branch you want to integrate. This is typically the username of the github user who’s suggesting the changes.

	
	Merge the master branch to make sure the branch only introduces new changes

	
	Run git merge master

	Fix any conflicts and commit the merge

	
	Switch back to the master branch and merge the branch

	
	Run git checkout master

	Run git merge <branch_name>

	Edit the details.json file for the guide you just merged changes into and
remove the branch you just integrated.

	You can do this directly by editing the details.json file or using github.com by by browsing to the details.json file and using the ‘edit’ button.

	Be careful to remove any trailing commas from the branches list if you remove the last branch. Remember, this file must be valid JSON syntax!

	
	Delete the branch you just merged on github.com

	
	Run git push origin :<branch_name> to remove the branch from github.com. You can also do this via github.com by browsing the branches again and clicking the trash can icon next to the branch.

	
	Push the changes to github.com

	
	Run git push origin master

Integrating some changes from branch

	
	Clone the content repository locally

	
	Use git clone <url> where <url> is the URL for the repository from the main github repository page.

	
	Look at the commit(s) you want to integrate a portion of

	
	Run git log -p <sha> to see the changes.

	You can use git diff -b <sha>..<prev_sha> to see the changes without any whitespace and/or line-ending changes.

	Manually apply the changes you want to the master branch.

	
	Commit the changes as the original user to make sure they get credit

	
	Copy the ‘Author:’ line from the original commit you’re integrating. See output of git log -p <sha> from step 2.

	Add the changes to staging with git add <filename>

	Finally, commit the changes as the original author with git commit –author=<author_info> where <author_info> is the information for the original author.

	Edit the details.json file for the guide you just merged changes into and
remove the branch you just integrated.

	You can do this directly by editing the details.json file or using github.com by by browsing to the details.json file and using the ‘edit’ button.

	Be careful to remove any trailing commas from the branches list if you remove the last branch. Remember, this file must be valid JSON syntax!

	
	Delete the branch you just merged on github.com

	
	Run git push origin :<branch_name> to remove the branch from github.com. You can also do this via github.com by browsing the branches again and clicking the trash can icon next to the branch.

	
	Push the changes to github.com

	
	Run git push origin master

Easier visualizing of complex diffs

Often times prose is harder to diff than code because the length of a line can
be very long. For example, it’s common for an entire paragraph to be a single
line in prose whereas software is usually broken up into small lines with hard
linebreaks.

This means a diff for prose could show a large change when in reality on a few
words were changed. The diff tools on github.com and git can help here if
you know the right options to use.

Github.com

Github.com defaults to ‘source diff view, but you can change this in the
top-right hand corner of any commit page. Try clicking the ‘rich diff’ icon
next to the ‘view’ button for a different view.

Git

First, try using git log –word-diff=color -p to see diffs. Another trick is
to find the two adjacent commits on a file and do something like the
git diff –word-diff=color d98909743b32df2f44e835162f50e5b6b7f92c1c..8bc2725698b84d95014b0124c141a08b1946718 in-review/ruby-ruby-on-rails/handling-file-upload-using-ruby-on-rails-5-api/article.md

You can get the two adjacent commits for a file by running git log –follow
<path_to_file>.

Github API usage

The CMS heavily uses the Github API. All of the raw API interaction takes
places in pskb_website/remote.py.

Logging API Rate Limits

The CMS uses authenticated API requests to ensure a higher rate limit, which
at the time of this writing is 5000 requests/hour [https://developer.github.com/v3/#rate-limiting]. This is sufficient if caching and
conditional requests [https://developer.github.com/v3/#conditional-requests]
are used.

It’s worth noting that the limit is per user and per application. Therefore,
the CMS can make 5000 API requests/hour on behalf of a user. However, not all
requests can be made with a specific user. For example, all requests to commit
data to the content repository use the REPO_OWNER Github API account. This
is necessary because regular users do not have commit rights to the content
repository. The requests using the REPO_OWNER Github API account are:

	Reading guides for a non-logged in user

	Committing guides to any branch

	Uploaded images for a guide

The REPO_OWNER account is the only account reasonably affected by the rate
limiting because typical usage will not lead to a logged-in user reading
thousands of guides in an hour.

It can be useful to monitor your usage since there’s an upper limit. You can
log the CMS’ Github API usage with the bin/rate_limit_watcher.py script.
There are a few ways to automate this data collection.

Heroku Scheduler

You can use the Heroku Scheduler [https://devcenter.heroku.com/articles/scheduler]
add on to run bin/rate_limit_watcher.py. Just add this add-on to your
account and set the add-on to run bin/rate_limit_watcher.py with your own
arguments.

New Relic Insights

You can also graph your API usage overtime by using Custom Events from New Relic [https://docs.newrelic.com/docs/insights/new-relic-insights/adding-querying-data/inserting-custom-events-insights-api].
To do this you’ll need to configure a few environment variables for your setup:

	NEW_RELIC_ACCT_ID - Your New Relic account ID

	NEW_RELIC_INSIGHTS_API_KEY - Your New Relic Insights API Key

You can get help finding these values by using the official New Relic docs [https://docs.newrelic.com/docs/insights/new-relic-insights/adding-querying-data/inserting-custom-events-insights-api].

Finally, run bin/rate_limit_watcher.py –report-to-new-relic to log your
usage to New Relic.

We’re using the New Relic Insights API instead of New Relic custom metrics and
custom events because the timestamps of the Github API data is not that
critical. The API limits do not need to be synchonized with all the other New
Relic data. In addition, the Insights API is easier to use from a script
that’s not embedded in the main WSGI application.

Github Webhooks

The CMS uses Github webhooks [https://developer.github.com/webhooks/] to
get notifications of changes happening on Github.com. These are not required,
but they are useful if you’re using the built-in Caching.
These webhooks can clear the cache when something changes on Github.com
directly so that the CMS is always using the most up-to-date guide information.

Configuring Push Events

This event is used to clear the cache of a guide when it’s changed via a commit
from the Github API and/or Github.com

	Go to the settings area of your content repository where all of your guides
are stored and click on ‘Webhooks & services’.

	Click ‘Add webhook’

	Set the Payload URL to <your_domain>/github_push

	The Content type should be application/json

	Setup your secret field according to Github’s instructions [https://developer.github.com/webhooks/securing/] or use the same secret you configured for Delete Events if you configured those first.

	Only subscribe to the push event

	Make sure the webhook is marked as active

	Click ‘Add webhook’

	Add a new environment variable to your you instance of the CMS called
WEBHOOK_SECRET and set it to the value you used in step 5.

Configuring Delete Events

This event is used to clean up the list of branches associated with a guide.

	Go to the settings area of your content repository where all of your guides
are stored and click on ‘Webhooks & services’.

	Click ‘Add webhook’

	Set the Payload URL to <your_domain>/github_delete

	The Content type should be application/json

	Setup your secret field according to Github’s instructions [https://developer.github.com/webhooks/securing/] or use the same secret you configured for Push Events above.

	
	Only subscript to the delete event

	
	Click ‘Let me select individual events’

	Make sure the webhook is marked as active

	Click ‘Add webhook’

	Add a new environment variable to your you instance of the CMS called
WEBHOOK_SECRET and set it to the value you used in step 5.

The same secret is used for all webhooks for simplicity and to cutdown on the
number of environment variables needed.

Testing

Github has great documentation on testing webhooks [https://developer.github.com/webhooks/testing/] and a solution for testing locally [https://developer.github.com/webhooks/creating].

Frequently Asked Questions

How do I change the URL for an existing guide?

First, you must understand how a URL for a guide is created. The URLs for a
guide are based on the following components:

	Stack

	Title

	publish status

The stack and title are the slug versions of the stack and title, which are
generated by the utils.slugify() function. In short, all
characters that are not ascii letters or numbers are translated to -, which
results in readable, SEO-friendly URLs.

The publish status is an optional query string to hint to the CMS which folder
to read the guide from. The CMS will search all possible publish statuses to
find a guide if this is missing.

This scheme causes a problem if you want to change the stack or title of an
existing guide, namely the old URL will not work. Therefore, it’s possible to
setup 301 redirects for guides in the redirects file.

Finally, to change a URL for an existing guide you need to make an entry in the
redirects file with the old URL that you want to
replace followed by the new URL and update the URL in the associated
guide listing file.

How do I change the title for an existing guide?

This process is a bit involved since the URL for a guide is based on the URL
(see previous question). To do this you need to do a bit of manual work with
the underlying git repository:

	Clone your CMS content repository locally

	Edit the title attribute in the details.json file for the guide you want
to change

	Save the file

	
	Determine new slug for the new title

	
	You can do this by replacing all non-ascii letters or numbers with the
- character or by running the utils.slugify() function on your
new title.

	
	Run git mv <curr_path_to_guide> <new_path_to_guide>

	
	The <new_path_to_guide> should include your new title

	
	Make an entry in the redirects file.

	
	Make sure to use the new title slug in the new URL.

	Edit the URL for your guide in the
guide listing file your guide belongs to

	Commit these changes to your CMS content repository and push to github.com.

	You can manually flush your redis cache or wait a few minutes for things to
automatically refresh.

How do I change the stack for an existing guide?

	Change the stack of your guide in the CMS web interface and save it

	Clone your CMS content repository locally

	
	Determine new slug for the new stack

	
	You can do this by replacing all non-ascii letters or numbers with the
- character or by running the utils.slugify() function on your
new stack.

	
	Make an entry in the redirects file.

	
	Make sure to use the new stack slug in the new URL.

	Edit the URL for your guide in the
guide listing file your guide belongs to

	Commit these changes to your CMS content repository and push to github.com.

	You can manually flush your redis cache or wait a few minutes for things to
automatically refresh.

Views

Main views of PSKB app

	
pskb_website.views.all_authors(*args, **kwargs)

	Get listing of all authors who’ve contributed a guide

	
pskb_website.views.article_view(stack, title)

	Find article with given stack/stack combination and display it

Note all publish statuses are searched and the first one found is returned.
This allows us to keep the same URL through the publish workflow process
since the status is only a ‘hint’ and query string.

By default, the statuses are searched in the order of importance:
published, in-review, and finally draft.

	GET parameters used:

	
	
	status: Hint on what publish status to search for FIRST

	
	Default is ‘published’ which makes the published articles have
clean URLs without any query string.

	
	branch: Branch of article to display

	
	Default is master

	
pskb_website.views.authorized()

	URL for Github auth callback

	
pskb_website.views.change_publish_status(*args, **kwargs)

	Publish or unpublish article via POST

	
pskb_website.views.contest()

	Contest page

	
pskb_website.views.contributors()

	Contributors page

	
pskb_website.views.delete(*args, **kwargs)

	Delete POST page

	
pskb_website.views.faq()

	FAQ page

	
pskb_website.views.get_sitemap()

	sitemap

	
pskb_website.views.get_social_redirect_url(article, share_domain)

	Get social redirect url for po.st to enable all counts to follow us
regardless of where we’re hosted.

	
pskb_website.views.github_login()

	Callback for github oauth

	
pskb_website.views.in_review()

	In review page

	
pskb_website.views.index()

	Homepage

	
pskb_website.views.internal_error(error=None)

	Unknown error page

	
pskb_website.views.login()

	Login page

	
pskb_website.views.logout(*args, **kwargs)

	Logout page

	
pskb_website.views.missing_article(requested_url=None, stack=None, title=None, branch=None)

	Handle missing articles by checking if URL is should be 301 redirect or
showing published articles in the URL is truly bad

	
pskb_website.views.my_drafts(*args, **kwargs)

	Users drafts

	
pskb_website.views.not_found(error=None)

	Not found error page

	
pskb_website.views.partner(article_path)

	URL for articles from hackhands blog – these articles are not
editable.

	
pskb_website.views.partner_import(*args, **kwargs)

	Special ‘hidden’ URL to import articles to secondary repo

	
pskb_website.views.render_article_list_view(status)

	Render list of articles with given status

	Parameters

	status – PUBLISHED, IN_REVIEW, or DRAFT

	
pskb_website.views.render_article_view(request_obj, article, only_visible_by_user=None)

	Render article view

	Parameters

	
	request_obj – Request object

	article – Article object to render view for

	branch – Branch of article to read

	only_visible_by_user – Name of user that is allowed to view article
or None to allow anyone to read it

	
pskb_website.views.render_published_articles(status_code=200)

	Render published article listing and featured article

This is extracted into a stand-alone function so we can render this in
multiple locations without redirects which could hurt SEO and usability.

	
pskb_website.views.review(title)

	This URL only exists for legacy reasons so try to find the article where
it is in the new scheme and return 301 to indicate moved.

	
pskb_website.views.set_featured_title(*args, **kwargs)

	Form POST to update featured title

	
pskb_website.views.strip_subfolder(url)

	Strip off the subfolder if it exists so we always use the exact same
share url for saving counts.

	
pskb_website.views.subscribe()

	Subscribe POST page

	
pskb_website.views.sync_listing(*args, **kwargs)

	Sync listing page

	
pskb_website.views.template_globals()

	Global variables available to all responses

	
pskb_website.views.url_components(url)

	Get URL path components as a list (leading slash is removed!)

	
pskb_website.views.url_for_domain(url, domain=None)

	Get url for domain from environment

	
pskb_website.views.user_profile(author_name)

	Profile page

	
pskb_website.views.write(*args, **kwargs)

	Editor page

Model API

This API layer provides access to the higher-level objects stored in Github
repositories. A single Github repository serves as the persistent storage for
the CMS. All data is fetched from Github through the Remote API layer and turned into formal objects by this model layer.

Article

Article related model API

	
class pskb_website.models.article.Article(title, author_name, filename='article.md', repo_path=None, branch=u'master', stacks=None, sha=None, content=None, external_url=None, image_url=None, author_real_name=None)

	Object representing article

	
contributors

	List of tuples representing any ‘author’ i.e user who has contributed
at least 1 line of text to this article. Each tuple is in the form of
(name, login) where name can be None.

We use plain tuples instead of named tuples or User objects so we can
easily seralize the contributors to JSON.

NOTE: This property automatically removes users set to ignore via the
contributors_to_ignore() function! To get the full list use
_read_contributors_from_api(remove_ignored_users=False).

	
static from_json(str_)

	Create article object from json string

	Parameters

	str – json string representing article

	Returns

	Article object

	
full_path

	Get full path to article including repo information
:returns: Full path to article

	
heart_count

	Read number of hearts for article

	Returns

	Number of hearts

	
open_graph_image_url

	Get full URL suitable for open graph meta tags

	
stack_image_url

	Get path to static image for article based on stack

None will be returned for articles without a stack image
FB open graph meta tags.

	
pskb_website.models.article.articles_from_json(json_str)

	Generator to iterate through list of article objects in json format

	Parameters

	json_str – JSON string

	Returns

	Generator through article objects

	
pskb_website.models.article.author_stats(statuses=None)

	Get number of articles for each author

	Parameters

	
	statuses – List of statuses to aggregate stats for

	statuses – Optional status to aggregate stats for, all possible
statuses are counted if None is given

	Returns

	Dictionary mapping author names to number of articles:

{author_name: [article_count, avatar_url]}

Note avatar_url can be None and is considered optional

	
pskb_website.models.article.branch_article(article, message, new_content, author_name, email, image_url, author_real_name=None)

	Create branch for article with new article contents

	Parameters

	
	article – Article object to branch

	message – Message describing article suggestions/changes

	new_content – New article text

	author_name – Name of author for article changes

	email – Email of author for article changes

	image_url – Image to use for article

	author_real_name – Optional real name of author, not username

	Returns

	New article object

New branch will be named after author of changes and title

	
pskb_website.models.article.branch_or_save_article(title, path, message, content, author_name, email, sha, image_url, repo_path=None, author_real_name=None, stacks=None, first_commit=None)

	Save article as original or as a branch depending on if given author is
the same as original article (if it already exists)

	Parameters

	
	title – Title of article

	path – Short path to article, not including repo or owner, or empty
for a new article

	message – Commit message to save article with

	content – Content of article

	author_name – Name of author who wrote content

	email – Email address of author

	sha – Optional SHA of article if it already exists on github

	branch – Name of branch to commit file to (branch must already
exist)

	image_url – Image to use for article

	repo_path – Optional repo path to save into (<owner>/<name>)

	author_real_name – Optional real name of author, not username

	stacks – Optional list of stacks to associate with article (this
argument is ignored if article is branched)

	first_commit – SHA of first commit to save with article

	Returns

	Article object updated, saved, or branched

	
pskb_website.models.article.change_article_stack(orig_path, orig_stack, new_stack, title, author_name, email)

	Change article stack

	Parameters

	
	orig_path – Current path to article without repo or owner

	orig_stack – Original stack

	new_stack – New stack

	author_name – Name of author who wrote article

	email – Email address of author

	Returns

	New path of article or None if error

Note this function only makes changes to articles on the master branch!

	
pskb_website.models.article.delete_article(article, message, name, email)

	Delete article from repository

	Parameters

	
	article – Article object to remove

	message – Message to include as commit when removing article

	name – Name of user deleting article

	email – Email address of user deleting article

	Returns

	True if article was successfully removed or False otherwise

This removes the article from the repository but not the history of
the file.

Only original author can remove file from master branch. Articles can be
removed from non-master branches only by the user who created that branch.

	
pskb_website.models.article.delete_branch(article, branch_to_delete)

	Delete branch of guide and save to github

	Parameters

	
	article – Article object to delete branch from

	branch_to_delete – Branch of guide to delete

	Returns

	True if deleted or False otherwise

	
pskb_website.models.article.find_article_by_title(articles, title)

	Search through list of article objects looking for article with given title

	Parameters

	
	articles – List of article objects

	title – Title to search for

	Returns

	article object or None if not found

	
pskb_website.models.article.get_articles_for_author(author_name, status=None)

	Get iterator for articles from given author

	Parameters

	
	author_name – Name of author to find articles for

	status – PUBLISHED, IN_REVIEW, DRAFT, or None to read all articles

	Returns

	Iterator through article objects

	
pskb_website.models.article.get_available_articles(status=None, repo_path=None)

	Get iterator for current article objects

	Parameters

	
	status – PUBLISHED, IN_REVIEW, DRAFT, or None to read all articles

	repo_path – Optional repo path to read from (<owner>/<name>)

	Returns

	Iterator through article objects

Note that article objects only have path, title, author name, and stacks
filled out. You’ll need to call read_article() to get full article
details.

	
pskb_website.models.article.get_available_articles_from_api(status=None, repo_path=None)

	Get iterator for current article objects

	Parameters

	
	status – PUBLISHED, IN_REVIEW, DRAFT, or None to read all articles

	repo_path – Optional repo path to read from (<owner>/<name>)

	Returns

	Iterator through article objects

Note that article objects only have path, title and author name filled out.
You’ll need to call read_article() to get full article details.

	
pskb_website.models.article.get_public_articles_for_author(author_name)

	Get iterator for all public i.e. non-draft articles from given author

	Parameters

	author_name – Name of author to find articles for

	Returns

	Iterator through article objects

	
pskb_website.models.article.group_articles_by_status(articles)

	Group articles by publish status

	Parameters

	articles – Iterable of Article objects

	Returns

	Iterable like itertools.groupby with a key as the publish_status
and a list of articles for that status

	
pskb_website.models.article.meta_data_path_for_article_path(full_path)

	Get path to meta data file for given article path

	Parameters

	full_path – Article object

	Returns

	Full path to meta data file for article

	
pskb_website.models.article.parse_full_path(path)

	Parse full path and return tuple of details embedded in path

	Parameters

	path – Full path to file including repo and owner

	Returns

	path_details tuple

	
class pskb_website.models.article.path_details(repo, filename)

	
	
filename

	Alias for field number 1

	
repo

	Alias for field number 0

	
pskb_website.models.article.read_article(path, rendered_text=False, branch=u'master', repo_path=None, allow_missing=False, cache_timeout=7200)

	Read article

	Parameters

	
	path – Short path to article, not including repo or owner

	rendered_text – Boolean to read rendered or raw text

	branch – Name of branch to read file from

	repo_path – Optional repo path to read from (<owner>/<name>)

	allow_missing – False to log warning for missing or True to allow it
i.e. when you’re just seeing if an article exists

	cache_timeout – Number of seconds to keep guide in cache if cached

	Returns

	Article object

	
pskb_website.models.article.read_article_from_metadata(file_details)

	Read article object from json metadata

	Parameters

	file_details – remote.file_details object

	Returns

	Article object with metadata filled out or None

Note the article contents are NOT filled out here!

	
pskb_website.models.article.read_meta_data_for_article_path(full_path)

	Read meta data for given article path from master branch

	Parameters

	full_path – Full path to article

	Returns

	Meta-data for article as json

Always read meta data from master branch because metadata is never altered
or updated in branches to keep merging simple.

	
pskb_website.models.article.save_article(title, message, new_content, author_name, email, sha, branch=u'master', image_url=None, repo_path=None, author_real_name=None, stacks=None, status=u'draft', first_commit=None)

	Create or save new (original) article, not branched article

	Parameters

	
	title – Title of article

	message – Commit message to save article with

	content – Content of article

	author_name – Name of author who wrote article

	email – Email address of author

	sha – Optional SHA of article if it already exists on github (This
must be the SHA of the current version of the article that is
being replaced.)

	branch – Name of branch to commit file to (branch must already
exist)

	image_url – Image to use for article

	repo_path – Optional repo path to save into (<owner>/<name>)

	author_real_name – Optional real name of author, not username

	stacks – Optional list of stacks to associate with article

	status – PUBLISHED, IN_REVIEW, or DRAFT

	first_commit – Optional first commit of article if it already exists

	Returns

	Article object updated or saved or None for failure

This function is not suitable for saving branched articles. The article
created here will be attributed to the given author_name whereas branched
articles should be created with branch_article() so the correct author
information is maintained.

	
pskb_website.models.article.save_article_meta_data(article, author_name=None, email=None, branch=None, update_branches=True)

	
	Parameters

	
	article – Article object

	author_name – Name of author who wrote article (optional)

	email – Email address of author (optional)

	branch – Optional branch to save metadata, if not given
article.branch will be used

	update_branches – Optional boolean to update the metadata branches of
the article with the given branch (True) or to save
article branches as-is (False)

	Returns

	SHA of commit or None if commit failed

Note that author_name and email can be None if the site ‘admin’ is changing
the meta data. However, author_name and email must both exist or both be
None.

	
pskb_website.models.article.save_branched_article_meta_data(article, author_name, email, add_branch=True)

	Save metadata for branched article

	Parameters

	
	article – Article object with branch attribute set to branch name

	name – Name of author who wrote branched article

	email – Email address of branched article author

	add_branch – True if article should be saved as a branch False if
article should be removed as a branch

	Returns

	SHA of commit or None if commit failed

Metadata for branched articles should be identical to the original article.
This makes it easier for automatically merging changes because metadata
differences won’t get in the way. The author_name is the only thing useful
for a branched article. However, that should already be encoded in the
branch name and the commits. So, editors of original articles will get
credit for helping via those mechanisms, not metadata.

	
pskb_website.models.article.search_for_article(title, stacks=None, status=None)

	Search for an article by the title and optionally stack and status

	Parameters

	
	title – Title of article to search for

	stacks – Optional list of stacks to search All stacks are searched if
None is given

	status – Optional status to search for All possible statuses are
searched if None is given

	Returns

	Article object if found or None if not found

User

User related model code

	
class pskb_website.models.user.User(name, login)

	Object representing user

	
static from_json(str_)

	Create user object from json string

	Parameters

	str – json string representing user

	Returns

	User object

	
is_collaborator

	Determine if user is a collaborator on repo

	Parameters

	
	owner – Owner of repository defaults to REPO_OWNER config value

	repo – Name of repository defaults to REPO_NAME config value

	
pskb_website.models.user.find_user(username=None)

	Find a user object with given username

	Parameters

	username – Optional username to search for, if no username given the
currently logged in user will be returned (if any)

	Returns

	User object

Note the email field on the returned user object is only valid when reading
the logged in user (i.e. when NOT passing a username). We cannot read email
information for users who have not authenticated the application.

File

More direct wrapper around reading files from remote storage

This module serves as a way to read and parse common markdown file ‘types’ from
the repository such as the file listings for published articles, etc.

	
pskb_website.models.file.draft_article_path()

	Get path to draft article file listing

	Returns

	Path to draft article file listing file

	
pskb_website.models.file.draft_articles(branch=u'master')

	Get iterator through list of draft articles from file listing

	Parameters

	branch – Name of branch to save file listing to

	Returns

	Generator to iterate through file_listing_item tuples

	
class pskb_website.models.file.file_listing_item(title, url, author_name, author_real_name, author_img_url, thumbnail_url, stacks)

	
	
author_img_url

	Alias for field number 4

	
author_name

	Alias for field number 2

	
author_real_name

	Alias for field number 3

	
stacks

	Alias for field number 6

	
thumbnail_url

	Alias for field number 5

	
title

	Alias for field number 0

	
url

	Alias for field number 1

	
pskb_website.models.file.get_removed_file_listing_text(text, title)

	Remove given title from file listing text and return result

	Parameters

	text – Text of file listing file

	Returns

	String of text with title removed

	
pskb_website.models.file.get_updated_file_listing_text(text, article_url, title, author_url, author_name, author_img_url=None, thumbnail_url=None, stacks=None)

	Update text for new article listing

	Parameters

	
	text – Text of file listing file

	article_url – URL to article

	title – Title of article to put in listing

	author_url – URL to author

	author_name – Name of author (i.e. login/username)

	author_img_url – Optional URL to image for author

	thumbnail_url – Optional URL to thumbnail image for article

	stacks – Optional list of stacks article belongs to

	Returns

	String of text with article information updated

	
pskb_website.models.file.in_review_article_path()

	Get path to in-review article file listing

	Returns

	Path to in-review article file listing file

	
pskb_website.models.file.in_review_articles(branch=u'master')

	Get iterator through list of in-review articles from file listing

	Parameters

	branch – Name of branch to save file listing to

	Returns

	Generator to iterate through file_listing_item tuples

	
pskb_website.models.file.published_article_path()

	Get path to published article file listing

	Returns

	Path to published article file listing file

	
pskb_website.models.file.published_articles(branch=u'master')

	Get iterator through list of published articles from file listing

	Parameters

	branch – Name of branch to save file listing to

	Returns

	Generator to iterate through file_listing_item tuples

	
pskb_website.models.file.read_file(path, rendered_text=True, branch=u'master', use_cache=True, timeout=480)

	Read file contents

	Parameters

	
	path – Short path to file, not including repo or owner

	rendered_text – Read rendered markdown text (True) or raw text (False)

	branch – Name of branch to read file from

	use_cache – Boolean to read from cache if available and save if not
found in cache (use False to bypass any cache
interaction, useful for very large files)

	timeout – Cache timeout to save contents with (in seconds) - only
used if use_cache is True

	Returns

	Text of file or None if file could not be read

	
pskb_website.models.file.read_file_details(path, rendered_text=True, branch=u'master')

	Read file details including SHA and contents

	Parameters

	
	path – Short path to file, not including repo or owner

	rendered_text – Read rendered markdown text (True) or raw text (False)

	branch – Name of branch to read file from

	Returns

	remote.file_details tuple or None if file is missing

	
pskb_website.models.file.read_items_from_file_listing(text)

	Generator to yield parsed file_listing_item from text

	Parameters

	text – Raw text as read from file listing file

	Returns

	Generator to iterate through file_listing_item tuples

	
pskb_website.models.file.read_redirects(branch=u'master')

	Read redirects file and parse into a dictionary mapping an old url to a new
url

	Parameters

	branch – Branch to read redirect file from

	Returns

	Dictionary with keys for old url and values for new url

The format of the redirect file is two URLs per line with whitespace
between them:

http://www.xyz.com http://www.xyz.com/1
http://www.xyz.com/2 http://www.xyz.com/3

This means redirect http://www.xyz.com to http://www.xyz.com/1 and redirect
http://www.xyz.com/2 to http://www.xyz.com/3.

Each line can start with an optional ‘- ‘, which will be ignored.

Any lines starting with a ‘#’ or not containing two tokens is ignored.

	
pskb_website.models.file.remove_article_from_listing(title, status, committer_name, committer_email, branch=u'master')

	Remove article title from file listing

	Parameters

	
	title – Title of article to remove from listing

	status – PUBLISHED, IN_REVIEW, or DRAFT

	committer_name – Name of user committing change

	committer_email – Email of user committing change

	branch – Name of branch to save file listing to

	Returns

	True or False if file listing was updated

	
pskb_website.models.file.sync_file_listing(all_articles, status, committer_name, committer_email, branch=u'master')

	Synchronize file listing file with contents of repo

	Parameters

	
	all_articles – Iterable of article objects that should be synced to
listing

	status – PUBLISHED, IN_REVIEW, or DRAFT

	committer_name – Name of user committing change

	committer_email – Email of user committing change

	branch – Name of branch to save file listing to

	Returns

	Boolean to indicate if syncing succeeded or failed

This can be a very expensive operation because it heavily calls the remote
API so be careful calling this for API limits and performance. Ideally
this should at least be run as some kind of background process.

	
pskb_website.models.file.update_article_listing(article_url, title, author_url, author_name, committer_name, committer_email, author_img_url=None, thumbnail_url=None, stacks=None, branch=u'master', status=u'draft')

	Update article file listing with given article info

	Parameters

	
	article_url – URL to article

	title – Title of article to put in listing

	author_url – URL to author

	author_name – Name of author (i.e. login/username)

	committer_name – Name of user committing change

	committer_email – Email of user committing change

	author_img_url – Optional URL to author’s image

	thumbnail_url – Optional URL to thumbnail image for article

	stacks – Optional list of stacks article belongs to

	branch – Name of branch to save file listing to

	status – PUBLISHED, IN_REVIEW, or DRAFT to add article to file
listing. All other file listings will also be updated to
remove this article if it exists there.

	Returns

	True or False if file listing was updated

Heart

Module to manage CRUD operations on ‘heart’ing guides

Image

Save and read image files to/from github

	
pskb_website.models.image.github_url_from_upload_path(path, name, branch='master')

	Get URL to see raw image on github from the path the file was uploaded to

	Parameters

	
	path – Path Full path file was save to github with

	name – Name file was saved with

	branch – Branch image was saved to

	Returns

	URL to see content on github

	
pskb_website.models.image.main_image_path()

	Get path to main repos images

	
pskb_website.models.image.save_image(file_, extension, message, name, email, branch='master')

	Save image to github as a commit

	Parameters

	
	file – Open file object containing image

	message – Commit message to save image with

	name – Name of user committing image

	email – Email address of user committing image

	branch – Branch to save image to

	Param

	Extension to use for saved filename

	Returns

	Public URL to image or None if not successfully saved

Lib

Collection of shared functionality for models subpackage

	
pskb_website.models.lib.contribution_stats()

	Get total and weekly contribution stats for default repository

	Returns

	Ordered dictionary keyed by author login name and ordered by most
commits this week
Each value in dictionary is a dictionary of stats for that
contributor

	
pskb_website.models.lib.contributors_to_ignore()

	Get set of logins to ignore from all contribution stats

	Returns

	Set of logins

	
pskb_website.models.lib.to_json(object_, exclude_attrs=None)

	Return json representation of object

	Parameters

	exclude_attrs – List of attributes to exclude from serialization

	Returns

	json representation of object as a string

Remote API

This API layer provides direct access to the Github storage layer through the
remote OAuth API calls.

Main entry point for interacting with remote service APIs

	
pskb_website.remote.check_rate_limit()

	Get rate limit data

	Returns

	None in case of an error or raw rate limit request data

	
pskb_website.remote.commit_file_to_github(path, message, content, name, email, sha=None, branch=u'master', auto_encode=True)

	Save given file content to github

	Parameters

	
	path – Path to file (<owner>/<repo>/<dir>/…/<filename>)

	message – Commit message to save file with

	content – Content of file

	name – Name of author who wrote file

	email – Email address of author

	sha – Optional SHA of file if it already exists on github

	branch – Name of branch to commit file to (branch must already
exist)

	auto_encode – Boolean to automatically encode data as utf-8

	Returns

	SHA of commit or None for failure

Note that name and email can be None if you want to make a commit with the
REPO_OWNER. However, name and email should both exist or both be None,
which is a requirement of the underlying Github API.

	
pskb_website.remote.commit_image_to_github(path, message, file_, name, email, sha=None, branch=u'master')

	Save given image file content to github

	Parameters

	
	path – Path to file (<owner>/<repo>/<dir>/…/<filename>)

	message – Commit message to save file with

	file – Open file object

	name – Name of author who wrote file

	email – Email address of author

	sha – Optional SHA of file if it already exists on github

	branch – Name of branch to commit file to (branch must already
exist)

	Returns

	SHA of commit or None for failure

	
pskb_website.remote.contents_url_from_path(path)

	Get github API url for contents of file from full path

	Parameters

	path – Path to file (<owner>/<repo>/<dir>/…/<filename>)

	Returns

	URL suitable for a content call with github API

	
pskb_website.remote.contributor_stats(repo_path=None)

	Get response of /repos/<repo_path>/stats/contributors from github.com

	Parameters

	repo_path – Default repo or repo path in owner/repo_name form

	Returns

	Raw response of contributor stats from https://developer.github.com/v3/repos/statistics/#get-contributors-list-with-additions-deletions-and-commit-counts

Note the github caches contributor results so an empty list can also be
returned if the data is not available yet or there is an error

	
pskb_website.remote.create_branch(repo_path, name, sha)

	Create a new branch

	Parameters

	
	repo_path – Path to repo that branch should be created from

	name – Name of branch to create

	sha – SHA to branch from

	Returns

	True if branch was created or False if branch already exists or
could not be created

	
pskb_website.remote.default_repo_path()

	Get path to main repo

	
pskb_website.remote.default_repo_url()

	Get URL to default repo

	
pskb_website.remote.file_contributors(path, branch=u'master')

	Get dictionary of User objects representing authors and committers to a
file

	Parameters

	
	path – Short-path to file (<dir>/…/<filename>) i.e. without repo
and owner

	base – Name of branch to read contributors for

	Returns

	Dictionary of the following form:

{'authors': set([(name, login), (name, login), ...]),

’committers’: set([(name, login), (name, login), …])}

Note that name can be None if user doesn’t have their full name setup on
github account.

	
class pskb_website.remote.file_details(path, branch, sha, last_updated, url, text)

	
	
branch

	Alias for field number 1

	
last_updated

	Alias for field number 3

	
path

	Alias for field number 0

	
sha

	Alias for field number 2

	
text

	Alias for field number 5

	
url

	Alias for field number 4

	
pskb_website.remote.file_details_from_github(path, branch=u'master', allow_404=False)

	Get file details from github

	Parameters

	
	path – Path to file (<owner>/<repo>/<dir>/…/<filename>)

	branch – Name of branch to read file from

	allow_404 – False to log warning for 404 or True to allow it i.e.
when you’re just seeing if a file already exists

	Returns

	file_details namedtuple or None for error

	
pskb_website.remote.files_from_github(repo, filename, limit=None)

	Iterate through files with a specific name from github

	Parameters

	
	repo – Path to repo to read files from

	filename – Name of filename to search for recursively

	limit – Optional limit of the number of files to return

	Returns

	Iterator through file_details tuples

	
pskb_website.remote.get_github_oauth_token()

	Read github token from session

	
pskb_website.remote.log_error(message, url, resp, **kwargs)

	Log an error from a request and include URL, response status, response data
and additional error information

	Params message

	Message to log

	Parameters

	
	url – URL of request that failed

	resp – Response object holding failure information

	kwargs – Additional data to put in error message

	Returns

	None

	
pskb_website.remote.merge_branch(repo_path, base, head, message)

	Attempt merge between two branches

	Parameters

	
	repo_path – Path to repo <owner>/<repo_name>

	base – Name of the base branch that the head will be merged into

	head – The name of the head to merge into base

	message – Commit message to use for merge

	Returns

	True if merge was successful False otherwise

	
pskb_website.remote.primary_github_email_of_logged_in()

	Get primary email address of logged in user

	
pskb_website.remote.read_branch(repo_path, name)

	Read branch and get HEAD sha

	Parameters

	
	repo_path – Path to repo of branch

	name – Name of branch to read

	Returns

	SHA of HEAD or None if branch is not found

	
pskb_website.remote.read_file_from_github(path, branch=u'master', rendered_text=True, allow_404=False)

	Get rendered file text from github API

	Parameters

	
	path – Path to file (<owner>/<repo>/<dir>/…/<filename>)

	branch – Name of branch to read file from

	rendered_text – Return rendered or raw text

	allow_404 – False to log warning for 404 or True to allow it i.e.
when you’re just seeing if a file already exists

	Returns

	file_details namedtuple or None if error

Note when requesting rendered text there will be no SHA or last_updated
data available. This is a restriction from the github API
(https://developer.github.com/v3/media/#repository-contents) Requesting
file ‘details’ like SHA and rendered text are 2 API calls. Therefore, if
you want all of that information you should call this function twice, once
with rendered_text=True and one with rendered_text=False and combine the
information yourself.

	
pskb_website.remote.read_repo_collaborators_from_github(owner=None, repo=None)

	Generator for collaborator login/usernames for a given repo

	Parameters

	
	owner – Owner of repository defaults to REPO_OWNER config value

	repo – Name of repository defaults to REPO_NAME config value

	Returns

	Generator through login names

	
pskb_website.remote.read_user_from_github(username=None)

	Read user information from github

	Parameters

	username – Optional username to search for, if no username given the
currently logged in user will be returned (if any)

	Returns

	Dict of information from github API call

	
pskb_website.remote.remove_file_from_github(path, message, name, email, branch)

	Remove file from github repo

	Parameters

	
	path – Path to file (<owner>/<repo>/<dir>/…/<filename>)

	message – Commit message to remove file with

	name – Name of author who wrote file

	email – Email address of author

	branch – Name of branch to delete file from

	Returns

	True if file was removed or False otherwise

Note the file is only removed from the repository, not the history of the
file.

	
pskb_website.remote.rendered_markdown_from_github(path, branch=u'master', allow_404=False)

	Get rendered markdown file text from github API

	Parameters

	
	path – Path to file (<owner>/<repo>/<dir>/…/<filename.md>)

	branch – Name of branch to read file from

	allow_404 – False to log warning for 404 or True to allow it i.e.
when you’re just seeing if a file already exists

	Returns

	HTML file text

	
pskb_website.remote.repo_sha_from_github(repo, branch=u'master')

	Get sha from head of given repo

	Parameters

	
	repo – Path to repo (owner/repo_name)

	branch – Name of branch to get sha for

	Returns

	Sha of branch

	
pskb_website.remote.split_full_file_path(path)

	Split full file path into owner, repo, and file_path

	Parameters

	path – Path to file (<owner>/<repo>/<dir>/…/<filename>)

	Returns

	(owner, repo, file_path)

	
pskb_website.remote.update_branch(repo_path, name, sha)

	Update branch to new commit SHA

	Parameters

	
	repo_path – Path to repo that branch should be created from

	name – Name of branch to create

	sha – SHA to branch from

	Returns

	True if branch was update or False if branch could not be updated

Utility functions

The following functions are for general use.

Generic functions for global use

	
pskb_website.utils.configure_redis_from_url(url)

	Create and configure a redis instance from the given url

	Parameters

	url – URL encoded in the popular scheme://netloc/path;parameters?query#fragment that urlparse.urlparse supports

	Returns

	configured redis.Redis object or None if there was a problem

	
pskb_website.utils.slugify(text, delim=u'-')

	Generates an slightly worse ASCII-only slug.

	
pskb_website.utils.slugify_stack(stack)

	Generates an ASCII-only slug version of the stack

Release Process

The following document explains the manual release process.

	
	Prepare release notes

	
	Run git tag to see release names

	Run git log <prev_tag>..HEAD to see all changes since last release.

	We typically only pick out the large changes that will affect users or
developers.

	Add notes to CHANGELOG file in restructed text format

	
	Pick a release name

	
	We’re loosely using semantic versioning.

	
	Create a tag locally for the release name

	
	git tag <name>

	
	Push tag to github.com

	
	git push origin <name>

	
	Add release notes to github.com

	
	Click ‘releases’ tab on main github project page

	Click ‘tags’

	Click ‘Add release notes’

	Fill out info in markdown!

** Yes, it’s annoying we have release notes in rst and markdown.** We could
potentially automate this or remove the redundancy in the future. Pull
Requests for this would be accepted. :)

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pskb_website	

 	
 	
 pskb_website.models.article	

 	
 	
 pskb_website.models.file	

 	
 	
 pskb_website.models.heart	

 	
 	
 pskb_website.models.image	

 	
 	
 pskb_website.models.lib	

 	
 	
 pskb_website.models.user	

 	
 	
 pskb_website.remote	

 	
 	
 pskb_website.utils	

 	
 	
 pskb_website.views	

Index

 A
 | B
 | C
 | D
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | W

A

 	
 	all_authors() (in module pskb_website.views)

 	Article (class in pskb_website.models.article)

 	article_view() (in module pskb_website.views)

 	articles_from_json() (in module pskb_website.models.article)

 	
 	author_img_url (pskb_website.models.file.file_listing_item attribute)

 	author_name (pskb_website.models.file.file_listing_item attribute)

 	author_real_name (pskb_website.models.file.file_listing_item attribute)

 	author_stats() (in module pskb_website.models.article)

 	authorized() (in module pskb_website.views)

B

 	
 	branch (pskb_website.remote.file_details attribute)

 	
 	branch_article() (in module pskb_website.models.article)

 	branch_or_save_article() (in module pskb_website.models.article)

C

 	
 	change_article_stack() (in module pskb_website.models.article)

 	change_publish_status() (in module pskb_website.views)

 	check_rate_limit() (in module pskb_website.remote)

 	commit_file_to_github() (in module pskb_website.remote)

 	commit_image_to_github() (in module pskb_website.remote)

 	configure_redis_from_url() (in module pskb_website.utils)

 	contents_url_from_path() (in module pskb_website.remote)

 	
 	contest() (in module pskb_website.views)

 	contribution_stats() (in module pskb_website.models.lib)

 	contributor_stats() (in module pskb_website.remote)

 	contributors (pskb_website.models.article.Article attribute)

 	contributors() (in module pskb_website.views)

 	contributors_to_ignore() (in module pskb_website.models.lib)

 	create_branch() (in module pskb_website.remote)

D

 	
 	default_repo_path() (in module pskb_website.remote)

 	default_repo_url() (in module pskb_website.remote)

 	delete() (in module pskb_website.views)

 	
 	delete_article() (in module pskb_website.models.article)

 	delete_branch() (in module pskb_website.models.article)

 	draft_article_path() (in module pskb_website.models.file)

 	draft_articles() (in module pskb_website.models.file)

F

 	
 	faq() (in module pskb_website.views)

 	file_contributors() (in module pskb_website.remote)

 	file_details (class in pskb_website.remote)

 	file_details_from_github() (in module pskb_website.remote)

 	file_listing_item (class in pskb_website.models.file)

 	filename (pskb_website.models.article.path_details attribute)

 	
 	files_from_github() (in module pskb_website.remote)

 	find_article_by_title() (in module pskb_website.models.article)

 	find_user() (in module pskb_website.models.user)

 	from_json() (pskb_website.models.article.Article static method)

 	(pskb_website.models.user.User static method)

 	full_path (pskb_website.models.article.Article attribute)

G

 	
 	get_articles_for_author() (in module pskb_website.models.article)

 	get_available_articles() (in module pskb_website.models.article)

 	get_available_articles_from_api() (in module pskb_website.models.article)

 	get_github_oauth_token() (in module pskb_website.remote)

 	get_public_articles_for_author() (in module pskb_website.models.article)

 	get_removed_file_listing_text() (in module pskb_website.models.file)

 	
 	get_sitemap() (in module pskb_website.views)

 	get_social_redirect_url() (in module pskb_website.views)

 	get_updated_file_listing_text() (in module pskb_website.models.file)

 	github_login() (in module pskb_website.views)

 	github_url_from_upload_path() (in module pskb_website.models.image)

 	group_articles_by_status() (in module pskb_website.models.article)

H

 	
 	heart_count (pskb_website.models.article.Article attribute)

I

 	
 	in_review() (in module pskb_website.views)

 	in_review_article_path() (in module pskb_website.models.file)

 	in_review_articles() (in module pskb_website.models.file)

 	
 	index() (in module pskb_website.views)

 	internal_error() (in module pskb_website.views)

 	is_collaborator (pskb_website.models.user.User attribute)

L

 	
 	last_updated (pskb_website.remote.file_details attribute)

 	log_error() (in module pskb_website.remote)

 	
 	login() (in module pskb_website.views)

 	logout() (in module pskb_website.views)

M

 	
 	main_image_path() (in module pskb_website.models.image)

 	merge_branch() (in module pskb_website.remote)

 	
 	meta_data_path_for_article_path() (in module pskb_website.models.article)

 	missing_article() (in module pskb_website.views)

 	my_drafts() (in module pskb_website.views)

N

 	
 	not_found() (in module pskb_website.views)

O

 	
 	open_graph_image_url (pskb_website.models.article.Article attribute)

P

 	
 	parse_full_path() (in module pskb_website.models.article)

 	partner() (in module pskb_website.views)

 	partner_import() (in module pskb_website.views)

 	path (pskb_website.remote.file_details attribute)

 	path_details (class in pskb_website.models.article)

 	primary_github_email_of_logged_in() (in module pskb_website.remote)

 	pskb_website.models.article (module)

 	pskb_website.models.file (module)

 	
 	pskb_website.models.heart (module)

 	pskb_website.models.image (module)

 	pskb_website.models.lib (module)

 	pskb_website.models.user (module)

 	pskb_website.remote (module)

 	pskb_website.utils (module)

 	pskb_website.views (module)

 	published_article_path() (in module pskb_website.models.file)

 	published_articles() (in module pskb_website.models.file)

R

 	
 	read_article() (in module pskb_website.models.article)

 	read_article_from_metadata() (in module pskb_website.models.article)

 	read_branch() (in module pskb_website.remote)

 	read_file() (in module pskb_website.models.file)

 	read_file_details() (in module pskb_website.models.file)

 	read_file_from_github() (in module pskb_website.remote)

 	read_items_from_file_listing() (in module pskb_website.models.file)

 	read_meta_data_for_article_path() (in module pskb_website.models.article)

 	read_redirects() (in module pskb_website.models.file)

 	read_repo_collaborators_from_github() (in module pskb_website.remote)

 	
 	read_user_from_github() (in module pskb_website.remote)

 	remove_article_from_listing() (in module pskb_website.models.file)

 	remove_file_from_github() (in module pskb_website.remote)

 	render_article_list_view() (in module pskb_website.views)

 	render_article_view() (in module pskb_website.views)

 	render_published_articles() (in module pskb_website.views)

 	rendered_markdown_from_github() (in module pskb_website.remote)

 	repo (pskb_website.models.article.path_details attribute)

 	repo_sha_from_github() (in module pskb_website.remote)

 	review() (in module pskb_website.views)

S

 	
 	save_article() (in module pskb_website.models.article)

 	save_article_meta_data() (in module pskb_website.models.article)

 	save_branched_article_meta_data() (in module pskb_website.models.article)

 	save_image() (in module pskb_website.models.image)

 	search_for_article() (in module pskb_website.models.article)

 	set_featured_title() (in module pskb_website.views)

 	sha (pskb_website.remote.file_details attribute)

 	slugify() (in module pskb_website.utils)

 	
 	slugify_stack() (in module pskb_website.utils)

 	split_full_file_path() (in module pskb_website.remote)

 	stack_image_url (pskb_website.models.article.Article attribute)

 	stacks (pskb_website.models.file.file_listing_item attribute)

 	strip_subfolder() (in module pskb_website.views)

 	subscribe() (in module pskb_website.views)

 	sync_file_listing() (in module pskb_website.models.file)

 	sync_listing() (in module pskb_website.views)

T

 	
 	template_globals() (in module pskb_website.views)

 	text (pskb_website.remote.file_details attribute)

 	
 	thumbnail_url (pskb_website.models.file.file_listing_item attribute)

 	title (pskb_website.models.file.file_listing_item attribute)

 	to_json() (in module pskb_website.models.lib)

U

 	
 	update_article_listing() (in module pskb_website.models.file)

 	update_branch() (in module pskb_website.remote)

 	url (pskb_website.models.file.file_listing_item attribute)

 	(pskb_website.remote.file_details attribute)

 	
 	url_components() (in module pskb_website.views)

 	url_for_domain() (in module pskb_website.views)

 	User (class in pskb_website.models.user)

 	user_profile() (in module pskb_website.views)

W

 	
 	write() (in module pskb_website.views)

 _static/minus.png

_static/plus.png

_static/up.png

_static/up-pressed.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 hack.guides() CMS

 		
 hack.guides()

 		
 Developer Documentation

 		
 Getting Involved

 		
 CHANGELOG

 		
 version .6 - 7/7/16

 		
 New Features

 		
 Bug Fixes

 		
 Changes

 		
 version .5 - 5/9/16

 		
 New Features

 		
 Bug Fixes

 		
 Changes

 		
 version .4 - 4/5/16

 		
 New Features

 		
 Bug Fixes

 		
 Changes

 		
 version .3 - 3/11/16

 		
 Bug Fixes

 		
 version .2 - 3/11/16

 		
 Changes

 		
 Bug Fixes

 		
 version .1 - 2/23/16

 		
 Requirements

 		
 Optional requirements

 		
 Install for local development

 		
 Setup environment variables

 		
 First-time Setup

 		
 Run locally with Flask webserver

 		
 Run locally with Gunicorn webserver

 		
 Setting up Celery for background processing

 		
 Testing

 		
 Testing without browser

 		
 Adding tests

 		
 Running tests locally

 		
 Github Application Setup

 		
 Create a repository for guides

 		
 Registering a Github Application

 		
 Layout of content repository

 		
 Layout components

 		
 Page

 		
 redirects.md

 		
 Guide Listing

 		
 Guide directory

 		
 article.md

 		
 details.json

 		
 Branches

 		
 Why not forks?

 		
 Why not Gists?

 		
 Deployment

 		
 Heroku

 		
 Run application locally with Heroku Procfile

 		
 Redis for background tasks

 		
 Deploying with local instance

 		
 Setting Featured Guide

 		
 Using environment variable

 		
 Using Redis

 		
 Publish Workflow

 		
 Draft

 		
 In-review

 		
 Published

 		
 Merging guide changes

 		
 Simple merges with github.com

 		
 Complex merges aka the hacker way

 		
 Integrating all changes from branch

 		
 Integrating some changes from branch

 		
 Easier visualizing of complex diffs

 		
 Github.com

 		
 Git

 		
 Github API usage

 		
 Logging API Rate Limits

 		
 Heroku Scheduler

 		
 New Relic Insights

 		
 Github Webhooks

 		
 Configuring Push Events

 		
 Configuring Delete Events

 		
 Testing

 		
 Frequently Asked Questions

 		
 How do I change the URL for an existing guide?

 		
 How do I change the title for an existing guide?

 		
 How do I change the stack for an existing guide?

 		
 Views

 		
 Model API

 		
 Article

 		
 User

 		
 File

 		
 Heart

 		
 Image

 		
 Lib

 		
 Remote API

 		
 Utility functions

 		
 Release Process

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/logo-white.png
hack.guides()

